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Abstract

This thesis describes work done on debugging techniques and
tools for communicating, loosely-coupled processes. Our work is
intended to reduce the apparent complexity of large systems of
communicating programs by regarding only the interprocess
activities of such programs. The use of multiple, communicating
processes as a model of computation allows for a very clean dcuto
of what information is interesting for debugging and what is not.
Our approach to debugging is to provide the user with information
about how sets of these processes behave rather than what each
program associated with each process does.

Our tools provide various primitives for manipulating the
interprocess activities of processes. We provide nothing to access
the source code of any program. Our tools include a debugger
program, a mechanism to fire and execute interprocess debuggin
demons and the ability to obtain transcripts of interprocess
activities. The debugger provides commands for the user at a
terminal for creating and manipulating individual interprocess
events. Demons are an event-driven mechanism used to automatically
monitor and modify interprocess events. *-Transcripts provide a
record of interprocess events that can iX eplayed later.

Our debugging techniques make use of these tools to provide
individual process control, communication monitoring and process
testing. Process control includes the ability to create, suspend
and destroy processes as well as the ability to obtain various
process-related information. The communication monitoring facility
monitors message traffic and can dynamically alter the contents of
these messages. Process testing allows a user to isolate a process
(or simulate a process) by creating and intercepting all message
traffic in and out of a process.

This thesis also describes a debugging system called SPIDER
that was built to demonstrate the above debugging tools and
techniques. A multi-process kernel is included in SPIDER that
supports communicating, loosely-coupled processes. SPIDER also
includes an implementation of each of our proposed tools: a
debugger program, a mechanism for firing demons and a transcriber.
Several examples using SPIDER are given to show how our debugging
techniques can be achieved with our debugging tools.
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Chapter 1
Introduction

1.1. The Problem.

Almost without exception, anyone who has learned how to write
and execute computer programs has learned something about debugging
them. We believe the presence of errors in computer programs has
an alarming acceptance among programmers and users alike. To this
day, software released by a certain large software house is
delivered with a disclaimer that if they always waited to find and
fix "the last bug" they would never release any software.

Much attention is now being paid to debugging systems and to
their impact on the development of software in various programming
environments. In particular, work is being done on development
systems that enable a human user to create and maintain large,
complex systems of programs. Not surprisingly, as user's programs
are becoming increasingly larger and more complex, the size of
these development systems is also growing to the extent that the
development systems have themselves become large and complex
systems of programs.

This thesis describes work done on debugging techniques and
tools for communicating, loosely-coupled processes. Communicating,
loosely-coupled processes are separate computer programs that
communicate with each other by sending and receiving messages, but
otherwise do not share memory (such as variables). These
communicating processes serve as a mechanism for organizing large,
complex systems of programs. With our techniques, we intend to
reduce the apparent complexity of such systems by using debugging
tools that regard only the interprocess activities of such
progra..s.

The use of multiple, communicating processes as a model of
computation allows for a very clean "cut" of what information is
interesting for debugging and what is not. For the purposes of
interprocess debTg, we will treat processes as separate,
communicating black boxes". We claim that debugging the
individual programs associated with processes does not allow the

- -- A*,A l
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user to cross process boundaries and handle interprocess
activities. Giving the user a debugger for each source program of
each process will fail to suppress irrelevant details and will
swamp him with information about the internal states of each
process. Instead, our approach is to provide the user with
information about how these sets of processes behave rather than
what each program associated with each process does.

1.2. Debugging Programs.

The following discussion reviews some systems for debugging
single programs with respect to the debugging tools provided and
the language used to communicate with the user. In particular, we

are looking at systems that attempt to maintain a close
relationship between the debugging environment and the user's
conceptual view of the solutions to his problems. This
relationship is the primary motivation for the design of our
debugging tools for the interprocess domain. The following is not
meant to be a complete history of all debuggers and is of course
limited by the author's personal knowledge. [Satterthwaite75]
contains an excellent history of debugging systems for the
interested reader.

Recent debugging research is concerned with on-line or
interactive debuggers and with experimentation on more powerful
debugging interfaces. Such work describes debugging languages that
are very similar to the conceptual language used to solve problems
by the user. [Myers80] describes a system called Incense that
provides an interactive, graphical display of a program's data
structures. Incense obtains information about the state of these
structures from the running program. The user indicates .Thich
structures he wants to see and Incense responds with an appropriate
display. The design of the displays used in Incense is intended to
parallel the user's view of what he believes his structures look
like. This display includes the use of visual analogues to
represent structures (such as boxes and arrows for linked list
structures) and the use of language constructs (such as variable
and enumeration type names) where appropriate. Although Incense
allows interactive control over how structures get displayed, it is
just a display program and does not allow interactive alterations
of the structures.

Another graphical approach is the Pygmalion system in
[Smith75]. A language is provided for both viewing and
manipulating hierarchical picture elements called icons. Icons
appear to be nested and linked boxes on the user's terminal screen.
Graphical manipulation by the user on icons causes Pygmalion to
create Lisp programs that perform the same function on Lisp
structures. Running an icon program causes the associated Lisp

#Aw-
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program to run and the resulting changes to data structures in the
Lisp code are mapped onto the screen as changes to icons. This
system makes a significant step towards creating, executing and
debugging a program in the same conceptual language used to solve
problems by the programmer. In particular, the "boxes and arrows"
representation of Pygmalion for nested and linked icons and the
iconic operations corresponds to the user's imaginary view of such
structures.

Another system that provides graphical input of programs is
ThingLab, described in [Borning79]. ThingLab is an object-oriented
system for building constraint-based simulations. The language of

ThingLab allows the user to program a simulation using a graphical
representation of objects and their various constraints. Values of
objects and their constraints can be changed dynamically using the
same graphical capabilities used to build the simulation. Though
less general than Pygmalion in its programming abilities, ThingLab
provides a variety of graphical displays (such as bar graphs,
arithmetic operations and constant and variable constraint values)
oriented toward a large class of simulation problems. With these
the user is able to create and watch the simulations of certain
problems in nearly the identical way the actual problems appear.

The Cornell Program Synthesizer, described in [Teitelbaum79],
is a noteworthy system combining a syntax-driven editor, program
interpreter and debugger in one programming environment. This
system provides all control over the editing, execution and
debugging of a program in one source language. The system has a
full-screen, derivation-tree program editor that does not allow the
user to write a syntactically illegal program. Compilation, in
fact, is performed automatically at certain times during program
editing. Debugging is combined with program execution using

various visual aids. These aids include a full-screen display of
the executing source text (with an indication of the currently
executing statement), a separate screen area devoted to display of
current variable values and another screen area for program output.
All of these features allow the user to stay completely in the same
source language, whether editing, executing or debugging his
programs. Of course, the user is limited to solving problems in
the programming language provided rather than a language that
represents his problems more closely.

No description of such program development systems is complete
without including the various Lisp systems. In terms of debugging,
editing and otherwise manipulating all objects of a program in the
same language, Lisp excels. [Sandewall78] is an excellent
description of the powerful, interactive nature of the Lisp
environment. However, even with this type of control, it is still
easy to create systems in Lisp too large and complex to comprehend
easily. Again, the user must think of his problems, the problem's
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representation and solution's representation completely in the
programming language of the system.

[Masinter80] describes Scope, one of the Lisp support systems
of Interlisp. Scope maintains a current data base of information
about the user's program. This data base is updated appropriately
when the program is edited and as the program executes. Scope
answers questions posed by the user about the state of the program
by querying this data base. Scope can answer questions dealing
with the static form of the program (like the location of procedure
definitions or procedure calls), questions dealing with the dynamic
execution environment of the program (like the names of all
currently executing procedures) or questions related to both (like
the location of the call of a particular executing procedure).
This tool provides a type of information filtering for the user
while debugging. All potentially relevant information is gathered
by the system and delivered to the user when he asks for it.

[Model79] describes higher-level and more automatic techniques
for monitoring complex systems. This work introduces the concept
of "meta-monitoring", which is the selective reporting of
high-level information about program execution. The system uses
knowledge about the significance of various types of program
information to identify the occurrence of important events and
suppress irrelevant details. Display of information about such
events to the user is made with visual analogies to the
computational states of the program. With all this, the user is
provided with an interpretation of the activities of a complex
system that is more relevant, informative and comprehensible than
provided by the raw information alone.

[Winograd75] describes how very large systems (Lisp systems in
particular) grow until they reach a point he calls the "complexity
barrier". Once this point is reached, the system developers can no
longer easily make any significant changes since the system has
become too complex for anyone to comprehend how a particular change
will affect other parts of the system. Winograd claims that
complex systems are not hard because of any "intrinsic difficulty
of the tasks the system must carry out". Instead, the problem is
the difficulty of managing all the various parts of a complex
system. Current programming environments, no matter how
knowledgeable they are about the programs they help to write, still

rely on the user to perform many tedious, bookkeeping tasks.
Winograd suggests ways that the apparent complexity of such systems
can be reduced based on techniques found in artificial intelligence
systems.

These systems share several common characteristics in their
solutions to the debugging problems of single programs. The
systems all maintain consistency with a language, either the
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programming language at hand or with the conceptual language used
to model the problem. The systems all provide for the compression
of information, either through filtering based on what the user
wants to see or through a visual analogy to a computational state.
The systems all monitor programs dynamically, either keeping track
of changing information as the programs run or providing for
runtime analysis so all potentially relevant information is
recorded. The systems all provide for the testing of parts of
programs without involving the entire program. We intend to
achieve similar characteristics with our debugging techniques for
the interprocess domain. In particular, we intend to provide

- a language for describing objects and operations in the
interprocess domain,

- mechanisms for filtering information about processes and their
behavior with each other,

- dynamic information and control over processes as they execute
and

- mechanisms for testing of individual processes before
integrating into a system of processes.

Our work is derived from two different research directions:

debugging systems for single programs and debugging systems for
multiple process systems. The following section describes the
multi-process direction and is followed by our goals for solving
the problem.

1.3. Debugging Multiple Processes.

The following reviews some multiple process work with respect
to the debugging facilities they provide. As with the single
program systems described above, we are concerned here with the
relationship between the debugging environment and the user's
conceptual view of his programs' activities. In particular, we are
looking at these systems for the tools and techniques provided to
debug the multi-process environment. This is not intended to be a
complete description of all multi-process systems. [Lantz80]
contains an exhaustive history of multi-process, message-based
systems for the interested reader.

The following describes how communication monitoring can be

achieved in a multi-process environment. [Bobrow72] describes a
facility for monitoring process activities in the Tenex operating
system. This system provides an "invisible" debugger that is
protected from program faults by residing in another process.

V 700 .... s
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(Balzer731 makes a reference to a similar communication monitor
implemented by reconnecting the communication ports of processes to
a debugger process without the knowledge of the other processes.
Balzer also notes that "nonexisting parts of a system can be
simulated at a terminal by a user who dynamically supplies the
needed data." IBaskett77] describes the communicating,
multi-process features of Demos. Demos provides processes, called
"tasks", with one-way message paths, called "links". Some links
are provided with each process initially, including a link to a
"Switchboard" task that allows a process to obtain certain public
links. Processes can also obtain links from other processes in
messages. One debugging feature described is a communication's
monitor for Demos processes. This monitor is inserted between two
communicating processes by manipulating their links. Note that
these suggest debugging techniques for working strictly outside t'.e
domain of the programs running the processes themselves. This
interprocess debugging provides information about how the processes
behave by analyzing their communication.

[RashidSO] describes the Interprocess Communication Facility
(IPC), a model for a message-based, multi-processing system. The
IPC model provides communication ports for sending and receiving
messages and a message format that is machine-independent. An
IPC-specific debugger called Black Flag is described in
[Philips8l]. A modification to the operating system is made that
allows Black Flag to interpose itself between a sending process and
its destination port. A user of Black Flag can monitor and even
manipulate the message traffic along this route by changing the
contents of messages. However, Black Flag provides neither control
over the processes nor any automatic filtering of messages.

[Feldman79] describes the distributed computing programming
language Plits. Processes in Plits, called "modules", are
distributed on distant machines and share no information directly.
Modules in Plits communicate using messages. A Plits message is
composed of a set of slots, each slot containing a name/value pair.
Slots can be individually added and removed from messages. For a
module to access a particular slot in a message, the slot name must
be declared in the module and must exist in the message. Modules
can thus manipulate messages that contain slots with name/value
pairs unknown to it. In particular, this allows a monitor or a
debugger to intervene and modify information in messages in transit
without the knowledge of the communicating processes.

[Gertner8O] presents a system for evaluating the performance
of communicating processes. This work describes a language for
modeling process behavior with composite finite state machines to
describe multiple process state and message traffic. Various
mechanisms are introduced to reduce the number of possible
interprocess state changes for the performance evaluator. This
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system essentially provides a relatively sophisticated message
traffic monitor. However, since it is not intended for use as a
true process debugger, no features are provided to control or
manipulate processes. In fact, special care is taken to ensure
that the monitor does not interfere in the operations of the system
being monitored.

The following systems provide features for debugging
individual processes in a multi-process environment. [Reiser75I
describes Bail, a debugger capable of accessing the multiple
process environment of a Sail program. Bail allows the user to
insert breakpoints and access variables in procedure instances
within process instances of a running program. [Ball75] describes
the RIG message-based operating system. RIG is a large,
message-based, multi-process operating system with no shared
variables between processes. Debugging in the RIG system is
accomplished using a multi-process debugging program capable of
accessing the (compiled) code of all processes (from [Ball7S1).
The debugger provides the usual assortment of debugging features on
a per process basis, such as the reading and writing of code and
data and the setting of breakpoints in individual processes.
Ho ,ver, in neither Bail nor the RIG debugger are any interprocess
features available: the debuggers cannot monitor message traffic,
cannot start or stop processes and cannot send or receive messages.

Some of the techniques used in multi-process debugging are
similar to those provided by single program debuggers since the
debugging problems are similar. For example, a user with multiple
processes needs to monitor messages and their contents just as a
user with a single program needs to monitor procedure calls, the
arguments of the calls and their results. Other techniques are
unique to the multi-processing domain: for example, a user can
take advantage of the multiple loci of control in the multi-process
domain to specify the order in which suspended processes are to be
resumed. In general, we claim that debuggers of multi-process
systems should be able to deal with the objects and activities of
the multi-process domain as program debuggers deal with the
programming language constructs of code and data. We also claim
multi-process debuggers should provide other features appropriate
to communicating multi-process domain. The above systems provide
for some of these features but do not take as general an approach
to the solution as we will here. The next section gives our goals
for this work and introduces our approach to solving these
problems.
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1.4. Our Goals for a Solution.

Our primary goal with this work is to provide tools and
techniques for debugging a message-based, multi-processing

environment. In particular, we claim such a debugging system

should provide:

- individual process control,

- communication monitoring facilities,

- process testing features.

Process control should include the ability to create, suspend

and destroy processes as well as the ability to obtain various

process-related information available in the system (such as length
of message queues, current process state, etc.). The communication

monitoring facility should be able to monitor message traffic,
(automatically or under the control of the user), and dynamically

alter the contents of these messages. Process testing features

should allow a user to isolate a process (by controlling the flow

of messages in and out of the process) and simulate a process by

creating message traffic dynamically.

Our approach to providing such features involves the use of

mechanisms based on the idea of an interprocess event. Each such

event represents a request to perform some interprocess activity,
(in the same sense that a procedure call in a program is a
itrequest" to execute that procedure). Our intention is to provide

tools that can monitor and manipulate such events to achieve these
abilities.
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We give here a simplified example of what we mean by an
interprocess event and how we plan to debug processes by
controlling events. Figure 1.1 below shows two communicating
processes. This figure is labelled to show three events, the
sending of a message by Processl, the arrival of the message at
Process2 and the receipt of the message by Process2.

Process1 Process2

M

Sending Message t
Receil~t of Message

Original Message Arrival of essage

Figure 1.1. Two communicating processes.

A -01Cii



10 -

Figure 1.2 shows these events and indicates where other events
could be inserted into this sequence to provide a simple monitoring
of this message traffic.

Normal Sequence of Events Inserted Events

f If M essage Is G ood News
Sending M essage jCount = Count + 1

If Message Is Good News
Arrival of Message J Count = Count + 1

[Receipt of Message

Figure 1.2. A (modified) sequence of events.



Figure 1.3 shows how Processl could even be simulated by
inserting the message-arrival event into this sequence. Note that
the monitoring event would not record that any process ever sent a
message, just that a process received one.

Normal Sequence of Events Insted Events

Fake Message Arrival

If Message Is Good News

Count = Count + 1

Receipt of Message

Figure 1.3. Simple process simulation.

Our debugging tools will provide us with the ability to

manipulate these events. These tools consist of the following:

- an interprocess debugger,

- interprocess debugging demons and

- a transcriber of interprocess events on a per process basis.

The debugger provides the user with a debugging language for
manipulating interprocess events. Debugging demons are an
event-driven component for monitoring and manipulating events
automatically. The transcriber provides for the recording of the
event sequence associated with a process that can be replayed later
for analysis.

.-- .-. - .- - . _______________-______
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In the following chapter (Chapter 2), we define our model for
a communicating, multi-process system. This includes definitions
for the interprocess objects and events used to support
communicating, loosely-coupled processes.

In Chapter 3, we define our debugging tools: the debugger,
the debugging demons and the transcriber. We also define the
interprocess debugging language used for manipulating the objects
and events of our model.

In Chapter 4, we describe the interprocess kernel. This
kernel implements the objects and events of the interprocess model
and implements our debugging tools.

Chapter 5 describes SPIDER, a program created to demonstrate
our debugging techniques. SPIDER implements the objects and events
of the interprocess model, as well as all our debugging tools.
This chapter shows the use of SPIDER to monitor, control and test
processes.

Chapter 6 concludes and discusses directions for future work.

An appendix is included at the end of this work that describes
in much detail the environment of the SPIDER demonstration program.
This includes the :'onm-rands available to the user of the debugger,
various commun::r.i: and multi-process procedures available to a
programmer and primitives used to create event-driven demons.

Another appendix is included that gives a complete description
of all types of interprocess events used by our multi-process
model.

OAS%--



Chapter 2
The Multi-process Model

2.1. Introduction.

In this chapter, we define our multi-processing model. This
model includes all the objects and operations necessary to support
communicating, loosely-coupled processes. We refer to the objects
of this model as interprocess objects and describe them in section
2.2 below. We refer to the operations performed on interprocess
objects as interprocess events and describe them in section 2.3
below.

The kernel is the program that implements all our interprocess
objects and the operations on them. Chapter 4 discusses this
kernel in detail. The kernel provides system routines that can be
called by programs to cause interprocess operations to occur.
These system calls are described in section 2.3.1 below.

2.2. Interprocess Objects.

In this section, we define the interprocess objects of this
model. Each object has a reference used to name the object.
Object references may be used as arguments in system calls and may
be returned as results from these calls. Object references may
also be sent in messages to processes. We will make some
restrictionLs on how a process may use object references received
from other processes. These restrictions are described in section
2.3.1 below. Note that all borders mentioned in this section are
defined in section 2.3.2 below.

A process is an object composed of zero or more ports, an
event execution parameter, a program, a program state, zero or more
process state variables and a process border. All of these
components are considered local to the process. Components of
other processes are considered foreign. Each of these components
is defined below.
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A port is an object composed of a queue of messages and a port
border. Each port is a component of exactly one process. Messages
are sent to ports (rather than to processes). Messages are
received from ports. In particular, only the process that contains
a particular port can receive its messages. A process can send
messages to any port it has a reference to. Messages have the
following partial ordering: all messages sent from a particular
process to a particular port will arrive in the order sent. No
other ordering occurs.

A name service is available for ports that allows processes to
obtain port references of foreign ports using commonly known names.
The scope of these names is global to all processes. This service
is accessed through system calls.

The event execution parameter of a process has either the
value "Runit or "Suspend". The value of this parameter specifies
whether interprocess events will get executed (Run) or will not get
executed (Suspend) for the process. (Interprocess events are
defined in section 2.3 below.) The event execution parameter of a
process is accessible only by the debugger cannot be modified by
the process. The value of this parameter is not to be confused
with the execution state of the process's program.

The program of a process is composed of a program border and a
single address space containing code and data. The address space
of this program exists on a machine whose characteristics are left
unspecified. No data is shared between the program in one process
and any other.

The program state of a process is one of NoCode, Running,
Dead, ReceiveWait, or SystemCall. This state reflects the
following about the program:

- NoCode, no code is running as the process's program,

- Running, code is running as the process's program and is
currently executing anything but a system call,

- Dead, the code previously running as the program has died,

- ReceiveWait, code is running as the process's program, has
called the system routine to receive a message from a port and
is waiting for a message to be returned, or

- SystemCall, code is running as the process's program and has
made a system call.
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A message is represented by a parenthesized list of zero or
more name/value pairs. A name/value pair is represented by a
parenthesized list containing an alphanumeric string as its first
component and either another alphanumeric string or a parenthesized
list as its second component. For example,

( Messagels Beware )

and

( Lunch ( Sandwich Peach ) )

are both name/value pairs and

C C Messagels Beware ) ( Lunch ( Sandwich Peach ) ) )

is a message containing both name/value pairs. Messages are
objects local to programs. When a message is sent from one process
to another, a copy of the message is made.

A process state variable is a name/value pair. These
variables are created and accessed by programs with system calls.
These variables allow a program to record interesting states or
information about the process for the user of the debugger.

Figure 2.1 below shows a process as we picture it with all of
its components.

W &%bok
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Object Reference
For Process

Event Execution Process 7 P
Parame erR un I

NoCode Program

Program Border
Object Reference

For Port

Process Variable

Message Port5 u v)

Message Queue

Port Border Process Border

Figure 2.1. A process.
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2.3. Interprocess Events.

This section describes the interprocess events of our model.
These events represent the operations on interpyocess objects
provided by the kernel to support communicating, loosely-coupled

processes.

An interprocess event is composed of an event class, an event
type, zero or more event parameters and a possibly empty process
reference. An event is created by the execution of a system call
by a process's program, by the user of the debugger giving a
command or as a side-effect of the execution of other events.
Events are requests to perform some activity by the kernel. Events
are executed by the kernel. After execution, each event is
destroyed. Again, Chapter 4 describes how the kernel executes
events in detail.

An event is composed of all information necessary to perform
some activity. The event type is the name of the activity. The
event parameters contain information dependent on the event type.
We will define event types and their parameters as we need them in
this discussion. A complete description of all event types and
their parameters is contained in Appendix B.

The event class has the value "SystemCall",
"MessageTransmission" or "DebuggingCommand". The class of an event
specifies whether the event is a system call executed by the
program of a process ("SystemCall"), a message being transmitted to
a port ("MessageTransmission") or a command from the user of the
debugger ("DebuggingCommand"). System call events are described in
the next section. Message transmission events are described in
section 2.3.2 below. Debugging events are defined in the next
chapter.

As an example of an event, in Figure 2.2 below we show the
event associated with a system call to send a message to a port by
the program of a process. Note that the event type is "Send" and
the event parameters include the message being sent and the
destination port. Also note the process reference of the event is
the process making the call. This event is created when the call
is made. The message is actually sent when the kernel executes the
event.
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Event

SyslemCall

Sn Event Class

Process1 l EventType

Port4 I Process Reference

((Color Blue ) 5)

Event Parameters

Figure 2.2. An event.

2.3.1. System Calls.

All interprocess activities of a process are controlled by a
process's program. A process's program executes system calls to
send and receive messages, to create ports and to create other
processes. We assume this program also executes other code related
to its internal data structures. We are not concerned here with
any aspect of the internals of these programs, other than their
connection with the multi-process environment through the system
calls. For the sake of convenience of notation, we will
occasionally say that a "process makes a system call" when we mean
"the process's program makes a system call".

We make the restriction that process's programs cannot make
interprocess system calls with foreign objects except:

- to send messages to foreign ports and

- to test the program state of processes created by the program
("child" processes).
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In terms of capabilities, each process's program has all
access rights to all objects local to the process and the right to
read the program state of its child processes. A process's program
may obtain the right to send messages to a foreign port through the
name service or by receiving a port reference in a message. Such
protection is possible since all access to interprocess objects,
local or foreign, can only be made through system calls.

Each system call creates an event representing the call. Each
such event has the following structure:

- the event class is "SystemCall",

- the event type is the name of the system call,

- the event parameters are the actual arguments of the system
call provided by the calling program and

- the event process reference is the process containing the
program making the call.

As a side-effect of the execution of every system call event,
a result is returned to the program. (For some system calls, this
result may be of no value, but the program will always wait for it
to be returned.) Note that this means the program is effectively
suspended for every system call until the kernel has executed the
event and returned a result.

As another side-effect, some system calls may cause other
events to occur. For an example of this, consider the system call
"Receive", which takes as its only argument a local port reference.
This system call creates an event of type "Receive". The execution
of this event creates an event of type "ReceiveWait", whose event
parameters include the port reference. If there is a message on
the port's message queue, this event will remove the first message
and return it to the program as the result of the original system
call. Otherwise, the event creates another "ReceiveWait" event and
returns nothing to the program. More details on message
transmission is contained in the next section.

S -. *4 i I I
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2.3.2. Message Transmission.

Message transmission activities are based on the concept of
borders that exist around specific interprocess objects.
Processes, ports and code objects have borders which much be
crossed by messages during their transmission. Each border is
bidirectional, with messages crossing in either the outgoing or

incoming direction. The order of border crossings of a typical
message transmission is shown in the Figure 2.3 below. A message M
is sent from the program of Processl to Portl of Process2. This
message:

- crosses the outgoing border of the program in Processl,

- crosses the outgoing border of Processl,

- crosses the incoming border of Process2 and finally

- crosses the incoming border of Portl and is put on Portl's
message queue.

Note that a copy of the message is sent and the original is
left in the program in Processl.

.... . ......... .. . .... 
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Process 1 Process2

n R Running

M

Port 17

Incoming Border of Por

Outgoing Border of Program Incoming Border of Process

Figure 2.3. Message transmission: sending a message.

In Figure 2.4 below, we show the receipt of message M by

Process2 from Portl. The message:

- is removed from Portl's message queue and crosses the outgoing
border of Portl,

- crosses the incoming border of the program in Process2 and
then

- is returned to the program.

iNew
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ProcesslProcess2

Run I RunI
Rjnning Running

M

// Incoming Program Border

Outgoing Port Border

Figure 2.4. Message transmission: receiving a message.



- 23 -

Each border crossing is a separate event and has its own
structure. We now give all the details of the above message
transmission, beginning with the program of Processi making the
system call to send message M to port Portl. This call creates the
event shown in Figure 2.5 below and changes the program state of
Process1 to "SystemCa11".

SystemCall

Send

Process1

Port1

M

Figure 2.5. "Send" event.
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The execution of this event changes the program state of
Processl to "Running", returns a result to the program and creates
the first border crossing event. The structure of this event is

shown in Figure 2.6 below.

MessageTransmission

OutGoingProgramBorder

Process1

Portl

M

Figure 2.6. "CrossingOutGoingProgramBorder" event.

~!0 -.. gbbw--
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The execution of this event creates the next border crossing
event, shown in Figure 2.7 below. Note for any object border being
crossed, the event process reference is always the process
containing that object.

MessageTransmission

OutGoingProcessBorder

Process l

Port1

M

Figure 2.7. "CrossingOutGoingProcessBorder" event.
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This event creates the next border crossing event, shown in
Figure 2.8 below. Note that the event process reference has been
changed.

MessageTransmission

InComingfrocessBorder

Process2

Porti

M

Figure 2.8. "Cross inglnComingProcessBorder" event.
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This event now creates the following final border crossing,
shown in Figure 2.9 below.

MessageTransmission

InComingPortBorder

Process2

Port1

M

Figure 2.9. "CrossinglnComingPortBorder" event.

The execution of this event causes the message M to be added
to the end of Portl's message queue.

il -% . .
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Now, suppose the program in Process2 executes the "Receive"
system call on Porti. This call creates the event shown in Figure
2.10 below and changes the program state of Process2 to
"SystemCall".

SyslemCaI

Receive

Process2

Port 1

Figure 2.10. "Receive" event.
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The execution of this event creates the "ReceiveWait" event
shown in Figure 2.11 below and changes the program state of
Process2 to "ReceiveWait". Note that no result will be returned to
the program until the message is removed from the port and has
crossed all the appropriate borders.

SystemCall

ReceiveWait

Process2

Portl

Figure 2.11. "ReceiveWait" event.

* -- ~-~, A--
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The execution of this event depends on the state of the
message queue of the port reference found in the event parameter.
If the message queue of this port is empty, the event creates an
identical event. (Remember that events are destroyed after
execution, so this event must create another one even though it is
the same event.) Thus the system will continue executing these
"ReceiveWait" events until a message appears in the message queue
of the port. Since we have a message in the message queue of
Porti, this event creates the border crossing event shown in Figure
2.12 below.

MessageTransmission

OutGoingPortBorder

Process2

Port1

M

Figure 2.12. "CrossingOutGoingPortBorder" event.



- 31 -

The execution of this event creates the next border crossing
event, shown in Figure 2.13 below.

MessageTransmission

InComingProgramBorder

Process2

Portl

M

Figure 2.13. "CrossinglnComingProgramBorder" event.

The execution of this event changes the program state of
Process2 to "Running" and returns the message to the program.

Dividing message transmission into this fine a grain will be
used later for debugging. Intuitively, we want to be able to
detect and intercept classes of messages as determined by the
borders they cross, such as any mess =  t a process
(incoming process border), any messa& a particular
port (incoming port border), any messa&-. 4 program
(outgoing program border), and so on. Sim- use of this feature
will appear in Chapter 3, which describes our debugging tools and
techniques, and in Chapter 4, which describes our demonstration
program.



Chapter 3
Interprocess Debugging Tools and Techniques

3.1. Introduction.

In this chapter, we describe our tools and techniques for
debugging communicating, loosely-coupled processes. The tools are
based on the manipulation of interprocess events as defined in our
model of the previous chapter. The techniques are based on the use
of our tools to achieve the debugging goals of process control,
process monitoring and process testing.

We describe in Chapter 4 how these debugging tools can be
incorporated into a multi-process kernel. Chapter 4 also discusses
how the kernel handles the execution of interprocess events for
processes. In 5, we give several sample debugging sessions
using our SPID ..x;ration program to show these debugging
tools and techniques at work.

3.2. Debugging Tools.

This section describes our debugging tools for the
multi-process domain. These tools manipulate interprocess events
in various ways. 7he debugger is provided to allow a user direct
control over in,*-.process events, such as modifying events,
creating events and destroying events. Debugging demons are
provided to give the user event-driven control over events.
Finally, a transcriber is provided to record events executed for a
process for later replay.

These tools provide control over the execution of processes at
the grain of the interprocess event. In particular, this control
interferes with the normal sequence and timing of events. This
interference will not affect our debugging techniques as we use
them in this work, but could keep these techniques from detecting
sequence or timing related interprocess bugs.

* I - - .-
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3.2.1. The Debugger.

The debugger provides the user at a terminal direct control
over interprocess events. Not only can the debugger inspect or
alter events created by processes, but it can also introduce new
events. Most of the debugger's abilities are provided by system
calls on the kernel. These calls are not available to programs
running as processes in the multi-process domain. Commands typed
by the user are either translated into a system call or, for a few
simple commands, executed directly. Appendix A details all
commands available to the user of the debugger and all system calls
available to programs.

In general, the user of the debugger can cause any action in
the multi-process domain of system calls that a program can
execute. A user can for example create a "Send" event for a
process, making it appear to other processes that Lhe process sent
a message. Using the debugger, the user can:

- create, access and modify interprocess objects,

- preview, single-step and replace individual interprocess
events,

- create, send and receive messages,

- start, stop and replace programs in processes,

- enable and disable debugging demons (see section 3.2.2 on
demons below) and

- start and stop the transcribing of a process's interprocess
events (see section 3.2.3 on the transcriber below).

Some of these features could be accomplished with nothing more
than access co the system calls normally available to programs.
However, in order to provide for interprocess.debugging with
demons, for the transcribing of events executed in the kernel or
for the replacement of process's programs themselves, we also make
available more powerful, debugger-specific commands.

As described in the previous chapter, each process in our
model has an event execution parameter whose value is either "Run"
or "Suspend". This parameter specifies whether events will get
executed ("Run") or will not get executed ("Suspend") for that
process. This parameter cannot be set by a process's program and
is intended for use only by the user of the debugger. With the
debugger, the user has two commands, Resume and Suspend, for
setting the event parameter to "Run" or "Suspend" respectively of a
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particular process. Events for suspended processes get added to a
suspend queue rather than executed.

When a process is suspended, the user can single-step the
process at the grain of interprocess events using the SingleStep
command. This command causes the next suspended event for that
process to be removed from the suspend queue and executed. With
the PreviewStep command, the user can view this step before its
execution. With the following restrictions, the user can also
replace (or destroy) a step:

- a system call event of a program can only be replaced with a
result to return to the program and

- a message transmission event can be destroyed or can have its
message replaced.

Figure 3.1 below shows a simple program that we will bring up
in a process and single-step at the interprocess level.

maino
{

port = CreatePorto; /" 1 "/
mes = Receive(por);/ 2 /
Type(mes); /"3"/

Figure 3.1. The program for a process.

We now show the sequence of debugger commands to bring the
program up and step through a few of the events tlat occur for that
process. In the following examples, the prompt for commands from
the debugger is ">" and all system responses are indented several
spaces to the right.



- 35

> CreateProcess(" Suspend")
created Process I

> StartProgram(" main"," Process ")
OK

> PreviewStep("Processl")
Event Class: SystemCall
Event Type: CreatePort
Event Process: Processi
Event Parameters:

> SingleStep(" Processl")
Event Class: SystemCall
Event Type: CreatePort
Event Process: Processi
Event Parameters:

> SingleStep("Processl 1)
Event Class: SystemCall
Event Type: ReturnResult
Event Process: Processi
Event Parameters: Porti

> SingleStep(" Process 1 ")
Event Class: SystemCall
Event Type: Receive
Event Process: Process1
Event Parameters: Porti

Figure 3.2. A user session, with single-stepping.

We now show a session where we send a message to a port in
this process and single step through the message transmission.
Note all the individual message transmission events. Also note the
separate event for returning a result to a program and the
"ReceiveWait" event used to represent the "state" of a process
waiting for a message.
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> Send("Port ,"( ( A OK))")
sent

> SngleStep("Processl ")
Event Class: MessageTransmission
Event Type: InComingProcessBorder
Event Process: Process1
Event Parameters: Porti ((A OK))

> SingleStep("Processl ")
Event Class: MessageTransmission
Event Type: InComingPortBorder
Event Process: Processi
Event Parameters: Porti ((A OK))

> SingleStep("Process 1")
Event Class: SystemCall
Event Type: ReceiveWait
Event Process: Process1
Event Parameters: Porti

> SingleSlep("Processl ")
Event Class: MessageTransmission
Event Type: OutGoingPortBorder
Event Process: Processi
Event Parameters: Porti ((A OK))

> SingleS(ep("Processl ")
Event Class: MessageTransmission
Event Type: InComingProgramBorder
Event Process: Processi
Event Parameters: Port1 ((A OK))

> SingleStep( Process 1 ")
Event Class: SystemCall
Event Type: ReturnResult
Event Process: Processi
Event Parameters: ((A OK))

Figure 3.3. Sending a message, with single-stepping.

With the debugger, our intention is to provide the user with
direct control over interprocess events. This control over a set
of programs at the grain of the interactions between processes is a
powerful tool for interprocess debugging.
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3.2.2. Interprocess Debugging Demons.

This sections describes interprocess debugging demons. Demons
provide an event-driven component for our debugging tools. Demons
can manipulate interprocess events just as the user of the debugger
can. Each demon has a list of commands which are executed when a
particular predicate becomes true. The list of commands come from
those provided by the debugger. The predicate is an expression
based on tests of conditions, objects and events in the
multi-process domain.

An interprocess debuggin demon is composed of a class, a
formal parameter list, a trigger and a command list.

The class of a demon is one of "ReadWrite", "ReadOnlyFinal",
"Replace" or "NoEvent".

The formal parameter list is a list of untyped variable names.
These parameters will be assigned values upon enabling (defined
below). These parameters can be used in the demon trigger or in
the command list.

The trigger of a demon is a boolean expression involving tests
for various interprocess states and events.

The command list of a demon is a list of commands from those
provided by the debugger. Any command executable by the user of
the debugger can also be executed by a demon. Because of this,
whenever we say the "debugger" can perform some function we also
imply that demons can perform the same function. Several other
commands are available to demons that are meaningless to the user
of the debugger. These commands are used for synchronization with
other demons or the debugger and also for certain forms of event
manipulation.

The following figure shows a demon and its structure.
Appendix A includes details on the syntax of demons.

................ ,-i~. -
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Demon Class Demon

Trigger NoEven" (P)

P = "Processi" and ProgramSlale(P) "Running"
Command List

Type("Program in Processi is Running")

Figure 3.4. A demon.

Demons are enabled with the debugger command "EnableDemon".
This creates an instance of the demon that will have its trigger
tested at the appropriate times by the kernel. A demon is removed
from this testing by disabling. When the trigger becomes true, the
demon is said to fire. When a demon fires, the command list of the
demon is executed. After the execution of all commands is
completed, the demon is re-enabled by the kernel.

Note that enabling and disabling only affects the testing of
the trigger by the kernel. A demon that has fired and is executing
can be disabled, but the execution of the demon will be completed.
The kernel will not re-enable a demon that has been disabled. This
feature ensures that demons will not be interrupted at an arbitrary
place in their execution. It also allows demons to disable
themselves for "one-time-only" execution.

When a demon is enabled, actual parameters are specified to
match with the demon's formal parameters. These parameters allow
several instances of the same demon to be used to watch for the
occurrence of particular events on different objects.
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Each demon is specified with a particular class. Demons can
fire because of certain interprocess states or because of an
attempt by the kernel to execute a certain interprocess event. All
demons in the former case are of class "NoEvent". In the latter
case, the demons must be in one of the other classes. The event is
called the interrupted event because it will be suspended during
execution of the demons. For several demons which fire on the same
event, their class determines a partial ordering for their
execution. This ordering is based on the need to let certain
groups of demons perform their functions on the interrupted event
before other demons execute. The demon classes and their intended
usage is as follows:

- "ReadWrite" class is for demons that monitor events as they
happen or want to modify events,

- "ReadOnlyFinal" class is for demons that want to monitor
events after all demons have modified them,

- "Replace" class is for demons that want to replace or abort
the event altogether and

- "NoEvent" class is for demons that do not fire on any
particular event.

We define the trigger set as the set of all demons of a
particular class that fire on a particular event. For each event,
the trigger set of demons of the class "ReadWrite" is created. If
the trigger set is not empty, each demon in this set is executed
one at a time in an arbitrary order.

Next, the trigger set is created for all demons of class
"ReadOnlyFinal" that fire on the possibly modified interrupted
event. These modifications are permanent and the original event is
effectively destroyed. The demons in this set are now executed one
at a time in an arbitrary order.

Next, the trigger set is created for all demons of class
"Replace" that fire on the event. This set can contain at most one
demon. If the set is not empty, the demon is executed. This demon
is allowed to replace or abort the event.

If the interrupted event has not been aborted, the event, as
modified by the demons, 4s now executed. (This algorithm,
including details on how other events get executed or suspended
during this process, is described with the kernel description in
Chapter 4.)

* . *-- , -. - - .. . ..
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Note that although demons of the same trigger set are executed
one at a time, there can be many demons executing at the same time
from different trigger sets. These demons will have either fired
on a different event or on no event at all.

Just before any demon trigger is to be tested, the execution
environment of that demon is created. The execution environment of
a demon is a set of name/value pairs. This set includes:

- name/value pairs formed by matching the values of the demon's
actual parameters with the names of the demon's formal
parameters,

- the names EventClass, EventType, EventProcess matched with the
appropriate values from the interrupted event,

- other event names (based on the event type) whose values are
derived from the interrupted event parameters.

All parameters in the execution environment can be used by the
demon trigger to decide whether to fire. When the demon executes,
it will also have available all of the execution environment.
(Note that demons of the class "ReadWrite" that modify event
parameters will each see the parameters from the original event.
After all demons of this class have executed, the interrupted event
is updated using the modified environments from the demons. This
event is then used to fire demons of the next class.)

Names in the environment derived from the interrupted event
parameters will depend on the particular event class and event
type. For instance, for an interrupted event of class
"MessageTransmission", the execution environment will include the
names "Message" and "Port" for the message being transmitted and
the destination port of the transmission respectively.

As an example of these rules for firing demons with classes,
we give the three demons below and describe how they will respond
to events. Note for the event type "Send", the event parameters
DestinationPort and Message are the destination port and the
message, respectively, of the "Send" system call.

," " - , 1 i I I I I I .-
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ReadWrite ( P)
Event Process - P and Eventrype ="Send' and
DestinationPort "Port5"

begin
DestinationPort -"Porti"

end

Figure 3.5. FireOnPort.demon.

end

Figure 3.6. FireOnMessage.demon.
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Replace ( P)
EventProcess P and EventType = "Send" and
DestinationPort = "Port1" and
ValueOflnMessage(Message, "Color") - "Red"

begin
Send(Message, "Port 1")
Send(Message, "Port2")
ReplaceEventWithReturnResult("OK")

end

Figure 3.7. ReplaceSend.demon

The FireOnPort demon is intended to route all messages sent
from process P to Port5 to Portl. FireOnMessage is intended to
alter all messages sent from process P with name/value pair "C
Color Blue )" to the name/value pair "( Color Red )". The
ReplaceSend demon takes all messages sent from process P to Portl
containing the name/value pair "( Color Red )" and sends them to
Portl and to Port2. In particular, the action of FireOnPort and
FireOnMessage on message transmission events will affect whether
the ReplaceSend demon gets fired. Assuming all three demons above
are enabled on the same process P, the following figure gives a
chart indicating which demons will fire given the system calls
(made by process P's program) as shown.
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FireOnPori FireOnMessage ReplaceSend

Send("Port5","( (Color Green))") X

Send("Port4",( (Color Blue))") X

Send(" Port 1 ","( (Color Red))") X

Send("Port5","( (Color Red))") X X

Send("Port ""(( Color Blue ))")X X

Send( Port5",'( (Color Blue ))")X X X

Figure 3.8. How the demons fire.

Note that in the fourth and fifth cases, the demon of class
"ReadWrite" will execute before the demon of class "Replace". In
particular, the execution environment for the ReplaceSend demon
will include the modifications made by the other demons. Thus, the
ReplaceSend demon will fire because of the modification made to the
event by the other demon.

In the sixth case of Figure 3.5, the demons of class
"ReadWrite" will be executed in an arbitrary order before executing
the other demon. Note that their modifications to the event
parameters do not conflict. If there had been conflicts (that is,
if they had both modified the same parameter), the event would have
been updated with only one of the demon's modified parameters.
Again, the ReplaceSend demon will fire because of the execution of
the other two demons.

We use demons to provide a mechanism for monitoring and
controlling interprocess objects and events automatically. The
ability to fire on interprocess events and state changes plus the
ability to execute any command available to the debugger makes
demons a powerful mechanism for debugging at the interprocess
level.

,
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3.2.3. The Transcriber.

The transcriber is a tool that records all interprocess events
executed for each process in a file called a transcript. In
particular, when transcribing a particular process, this will
record every event whose event process refers to that process.

The transcriber records only those events actually executed.
Thus events will be recorded only after all demons have fired,
executed and (possibly) modified the event. This will not record
any events created by the debugger or by demons unless, as a
side-effect, they cause events associated with particular processes
to occur. For instance, if the debugger is used to send a message
to a port in a process being transcribed, no events related to this
transmission will be recorded until the message crosses the
incoming border of the process.

The transcript can be replaye in a process in place of its
'program. This method of replay is based on the idea that the
program of a process causes events to occur for that process.
These events can then be manipulated by the debugger or cause
event-driven demons to execute. Similarly, transcript replay
causes events to occur for the process doing the replay. These
events can be manipulated by the debugger (for instance,
single-stepped) and they can be used to fire demons. Demons can
access and even modify the event parameters as with all other
events. In fact, these events act like any other event in all
respects except that they are not executed by the kernel. Thus,
the events cause no side-effects directly.

This ability, to use a previous process execution to create
events is considered a powerful feature of the debugging techniques
described here. Since all our tools are based on the concept of an
event and on manipulating events in various ways, this gives us a
consistent mechanism for both recording a process's behavior and
using this record for other debugging purposes.

3.3. Debugging Techniques.

This section discusses the use of our debugging tools to
achieve certain interprocess debugging goals. As we said in the
first chapter, the user of a debugger for a message-based,
multi-processing environment should have the ability to control,
monitor and test processes. Our approach is to provide the tools
described above for performing various manipulations on
interprocess events and then define the desired techniques in terms
of the use of these tools. For the definitions below, the
"interprocess events associated with a particular process" are
either the events created by a running program for that process,
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events replayed by a transcript, events created for that process by
the debugger or events created for that process by demons.

Process control is the manipulation by the user of the
debugger or by demons of the interprocess events associated with a
particular process. This control allows the user (or demons) to
specify completely the behavior of a process at the grain of
interprocess events. In practice, this usually means that only a
certain set of the activities of the total behavior of the process
will be affected.

Process monitoring is the observation by the user of the
debugger or by demons' of the interprocess events associated with a
particular process. We make the following differentiation between
observation and manipulation: observation of a process implies no
modification to a process's behavior will be made, manipulation
implies that modifications can be made. This difference mostly
affects the use of demons, which specify their class based on how
they intend to interfere with interprocess events. Obviously, if a
process is being controlled, it is also being monitored.

Process testing is the determination of the behavior of a
process by process control and process monitoring. By using
process control to specify the behavior of other processes and
process monitoring to observe the events associated with a certain
process, we can effectively test this process. Note that it is
possible to use process testing to determine the behavior of a
process that process control lets the user completely specify.
This is of course a trivial use of process testing. In testing a
process, process control is intended to allow the user to specify
the behavior of other processes.

• - , r --.. o .-.



Chapter 4
The Interprocess Kernel

4.1. Introduction.

In this chapter, we describe the interprocess kernel. Our
kernel is responsible for creating and modifying interprocess
objects, for implementing interprocess events and for implementing
support for our debugging tools. Our description here will regard
only that part of the kernel responsible for implementing the
interprocess objects, events and debugging tools as described in
Chapters 2 and 3. This kernel can be viewed as an extension to a
standard multi-process operating system providing multiple process
support (memory management, paging and swapping), a mechanism for
programs for making system calls, a file system (for storing
programs and demons) and terminal I/0 support.

4.2. Basic Function of the Kernel.

The kernel implements the interprocess objects and all
operations on them. Each interprocess object has a representation
in the kernel containing all items as described in Chapter 2 for
each object definition. Each interprocess event also has a
representation containing the items given in Chapter 3 for the
definition of an event.

In order for an event to be executed, it must first be put on
the event queue. Figure 4.1 shows this event queue and the basic,
top-level loop of the kernel. Events are added to this queue
either by other events or by programs executing system calls. Note
that since commands executed by the debugger for the user or for
demons are treated as system calls, they also add events to this
queue. However, to give quick response to the debugging functions,
events added by system calls from the debugger take priority over
other events.

* - - ~ -
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Events Event Queue

DEJE...EJ

Kernel's Top-Level Loop

._ Remove First Event

From Event Queue

I Execute Event

Figure 4.1. The basic kernel.

As shown in Figure 4.1 above, the basic kernel removes a
waiting event from the front of the event queue, executes it and
then repeats. -ien an event is executed, it may create or modify
interprocess objects or it may add new events to the event queue.
After an event has been executed, it is destroyed.

4.3. Modifications for the Debugger.

To the kernel described above, we add certain modifications to
support our debugger. Each process has an event execution
parameter (defined in Chapter 2) and each event has a process
reference (defined in Chapter 3). We define the suspend queue of a
process as an event queue associated with that process. (This
suspend queue is another component of each process.) If the event
executior parameter of the process referenced by an event is
"Suspend , the event will be added to the suspend queue for that

li i4 1
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process instead of being executed. This action is shown in the
following figure.

iRemove First Event

;pP From Event Queue

If Event Test For Suspended Process ,

If Event Process Is Not Suspended

-- Execute Event

Figure 4.2. Kernel modified to support the debugger.

Changing the event execution parameter of the process to "Run"
causes the events in the process's suspend queue to be added to the
end of the kernel's event queue.

4.4. Modifications for Demons.

Support for demons includes a demon trigger evaluator, a demon
checker, a representation for trigger sets and various suspend
queues for object borders. We define below the various
modifications and procedures added to the kernel to support demons.

Each trigger set has a representation in the kernel. This
representation includes the interrupted event, the names of all
demons yet to be executed, the name of the currently executing
demon, the names of all demons that have been executed, the demon
class of this set, the initial execution environment and the
environments of each executed demon.

The demon trigger evaluator is a procedure that returns a
trigger set given an event and a demon class.

The demon check procedure is used by the kernel to manage the
firing of demons. As shown in Figure 4.3 below, this procedure is
called twice, once for every event that occurs in the kernel and

____________
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once before any event is removed. Note in the second occurrence of
the procedure call in this figure:

- if the procedure returns the null event, the kernel loops to
the top,

- if the procedure returns an event, the kernel procetds to
execute it.

_ _ _Demon Check Procedure
With No Event

Remove First Event
From Event Oueue

~Demon Check Procedure

With Event

No Event Returned

L : Event Returned

, Execue Eventl

Figure 4.3. Kernel modified to support demons.

When this procedure is called without an event, its task is
fairly simple. The procedure calls the demon trigger evaluator
with the class "NoEvent" to get the trigger set for this class. If
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the set is not empty, a demon is started from this set and the
procedure returns the null event. If the set is empty, the
procedure returns the null event.

When the demon check procedure is called with an event, the
procedure does one of two things based on the event type:

- if the event type is "DemonDone", (that is, if a demon has
finished executing), the procedure decides on the next demon
to execute,

- otherwise, for all other events, the procedure determines the
first demon to execute for this event.

To determine the first demon to fire for an event, the
procedure calls the demon trigger evaluator with classes
"ReadWrite", "ReadOnlyFinal" and "Replace", in that order, until
either a non-empty trigger set is returned or no such set is found
in any class. If no set is found, no demons are executed and the
procedure returns the event. If a non-empty set is found for one
of the classes, one of the demons of that set is started with the
initial execution environment, the event is associated with the
trigger set (and effectively suspended) and the procedure returns
the null event.

When a demon finishes execution, it causes an event of type
"DemonDone" to occur. When that event occurs, the demon check
procedure must decide the next demon to execute. First the
procedure looks at the set of names of demons not yet fired in the
trigger set of this demon. If this is non-empty, a demon is chosen
and started with the initial execution environment and the
procedure returns the null event. If this set is empty (that is,
if the last demon of this class has just executed), the action of
the procedure depends on the demon class of the trigger set. If
the demon class is:

- "NoEvent", the trigger set is destroyed and the procedure
returns the null event,

- "ReadWrite", the final execution environments are used to
update the initial execution environment of the trigger set
and the trigger set for class "ReadOnlyFinal" is determined;
if this set is not empty, a demon is started with the initial
execution environment and the procedure returns the null
event; otherwise the following case for class "ReadOnlyFinal"
is performed;

- "ReadOnlyFinal", the trigger set for class "Replace" is
determined; if this set is not empty, a demon is started with
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the initial execution environment and the procedure returns
the null event; otherwise the following case for class
"Replace" is performed;

"Replace", the trigger set is destroyed and the procedure
returns the event as left by the demons (i.e., the null event
if the original was aborted by a demon, the possibly modified
event otherwise).

Note for each of the cases "ReadWrite" and "ReadOnlyFinal"
above, if the trigger set for the next class is empty, the step for
that class is executed. In other words, the procedure acts exactly
as if the last demon of the next class had just executed.

Note that the position of the demon check procedure in the
kernel's top-level loop and the ability of this procedure to return
either a null event or an event to execute allows events to be
suspended, replaced or aborted altogether.

Another modification we make to the kernel is to suspend
borders for trigger sets firing on events of class
"MessageTransmission". Suspending a border involves adding four
more suspend queues to each process object and two suspend queues
to each port object in the kernel. For processes, the four queues
are for the incoming and outgoing process borders and for the
incoming and outgoing program borders. For ports, the two queues
are for the incoming and outgoing port borders.

When a trigger set is created for an event of class
"MessageTransmission", the appropriate border (based on the event
type) is suspended. Any such event associated with an object with
a suspended border will be added to the appropriate suspend queue
for that object. Thus, until all demons have finished executing
for a particular border crossing event, all other events that cross
the same border in the same direction will be suspended. When the
trigger set of the suspended event is destroyed, the border is
resumed and the events on it are added to the event queue of the
kernel.

4.5. Modifications for the Transcriber.

This section describes modifications made to the kernel for
the transcriber. We modify the kernel to:

- transcribe events for a process,

- provide for the replay of a transcript.

! M_
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The following figure shows all our modifications to the kernel
in place, including support for the transcriber.
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Demon Check Procedure
With No Event

Remove First Event
From Event Queue

• - Test For Suspended Process

Transcribe System Calls

L emon Check Procedure

With Eve~nt

F ranscribe All Other Events I

If~~ Fs For ReplaysNo ea

IfEvent Is Replay I vn sNtRpa

Execute Event

Figure 4.4. Kernel modified to support the transcriber.
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Support for transcribing events for a process involves two
changes. The primary addition is the transcribing of events after
the demon checker but before event execution. However, under
certain conditions this will miss an important event: whenever a
program makes a system call and a demon fires on this event and
replaces the call, the transcript will contain only the event
regarding the result returned to the program. This will result in
a transcript with an event for returning a result to the program
unmatched with any system call. For this reason, we also
transcribe all system calls before demons are checked.

To support transcript replay, the kernel is modified to read
in events from a transcript instead of executing a program for a
process. These events are marked as "transcript" events, but in
all other respects look like actual events. The kernel loop is
modified to destroy these events just before event execution would
occur (shown in Figure 4.5 above). Note that transcript events may
contain references to objects in the interprocess domain that do
not exist. Thus, demons that fire on these events and use their
parameters must be aware that the object references in the events
are probably bogus.



Chapter 5
A Demonstration of Interprocess Debugging

5.1. Introduction.

In this chapter, we describe SPIDER: the multi-process system
built for demonstrating the interprocess debugging tools and
techniques of this thesis. SPIDER is a set of programs that
together implement the multi-process model of Chapter 2 and our
debugging tools of Chapter 3.

We also give several examples demonstrating the debugging
tools and techniques of Chapter 3. This includes the basic control
of processes (section 5.2), the monitoring of running processes or
transcribed processes (section 5.3) and the testing of a new
process (section 5.4).

5.2. The Implementation of SPIDER.

SPIDER is a set of programs implemented in C under the
Berkeley Unix operating system running on a VAX/780. The core of
SPIDER is the program that implements the multi-process kernel.
This kernel effectively extends Unix to provide all the features of
the message-based, multi-process model of Chapter 2.

To this kernel, we add our debugging tools. The debugger
consists of a program that accepts commands from the user at a
terminal and passes them on to the kernel. The kernel is modified
to accept these commands and make debugging events out of them.
Debugging demons are implemented by adding a mechanism to the
kernel to test all demon triggers per event. Another program is
created (actually a modified version of the debugger) for executing
fired demons. For the transcriber, the kernel is modified to make
transcripts of events on a per process basis and to replay
transcripts.

When the system is running, a separate Unix process exists for
each of the following:

.4w-.-
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- the kernel,

- the debugger,

- each program associated with a process and

- each executing demon.

The communication medium used between our Unix processes is
the Interprocess Communication Facility (IPC) described in
[Rashid80]. This medium is used to provide the semantics of
interprocess system calls made between the separate address spaces
of the kernel and programs. (The debugger's commands are
implemented as additional system calls provided by the kernel not
otherwise available to the programs of processes.) Figure 5.1
shows the IPC communication paths of the various processes
involved. Note that only one kernel was built on one machine. Our
model does not describe and SPIDER does not implement a truly
distributed multi-process debugging system.
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kernel

IPC Communication Paths

debugger

Demon Instances Programs for Processes

Figure 5.1. Communication paths among our Unix processes.

5.3. An Example: Process Control.

This section shows how we use our tools to create and control
processes directly. First, using the debugger, we create a process
and examine its state (Figure 5.2 below). Note that when a process
is created, an initial value of the event execution parameter is
given.

.. UMMMMWfton



- 58 -

15:41:38> CreateProcess(" Run")
Process 1

15:41:45> StatusOf("Processl")
Status Of: Process1
Event Execution Parameter: Run
Program State: NoCode

15:41:55> Suspend(" Process 1)
OK

15:42:12> Statusof("Process 1")
Status Of: Process1
Event Execution Parameter: Suspend
Program State: NoCode

15:42:19>

Figure 5.2. Creating a process with the debugger.

Note this process has no program associated with it and will
cause no events to occur by itself. Now we associate a program
called the Sender with this process. Also in another process we
associate a program called the Receiver. When both of these
processes are running, the Sender will send messages containing
either the string "Blue" or "Red" to the Receiver. The Receiver
will count the number of "Blue"s and "Red"s received and record
this in two process variables, "NumBlues" and "NumReds". This
interaction is shown below in Figure 5.3. Note the use of the
Resume and Suspend commands, which change the value of the event
execution parameter of the process to "Run" or "Suspend",
respectively.
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15:44:23> StartProgram("Sender"," Process 1")
OK

15:44:30> CreateProcess("Suspend")
Process2

15:44:42> Start Program("Receiver","Process2")
OK

15:45:00> Resume("Process2")
OK

15:45:21 > Resume("Processl")
OK

15:45:26> StatusOfAll()
Status Of: Process1
Event Execution Parameter: Run
Program State: Running (Sender)

Status Of: Process2
Event Execution Parameter: Run
Program State: ReceiveWait (on Poril) (Receiver)
Process Variables: ( NumBlues 3) (NumReds 1)
Ports: Porti
Message Queue (Porti):

15:45:53>

Figure 5.3. A process interaction.

We now bring the Receiver program down, clear the process
variables and restart another Receiver in Process2. We let both
these processes run for a while and then suspend both (Figure 5.4).
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15:49:04> StopProgram("Process2")
OK

15:49:29> StatusOf("Process2")
Status Of: Process2
Event Execution Parameter: Run
Program State: NoCode
Process Variables: (NumBlues 7) ( NumReds 2)
Ports: Port1
Message Queue (Port1):

15:51:43> AssertProcessVariablelnProcess("Process2","( NumReds 0)")
OK

15:51:59> AssertProcessVariablelnProcess("Process2","( NumBlues 0 )")
OK

15:52:15> StatusCf("Process2")
Status Of: Process2
Event Execution Parameter: Run
Program Stale: NoCode
Process Variables: (NumBlues 0) ( NumReds 0)
Ports: Port1
Message Queue (Porti):

15:52:22> Remove(" Receiver")
OK

15:52:59> StartProgram( "Receiver"," Process2")
OK

15:53:10> Resume("Processl ")

OK
15:54:02> StatusOf("Process2")

Status Of: Process2
Event Execution Parameter: Run
Program State: ReceiveWait (on Port2) (Receiver)
Process Variables: ( NumBlues 9) ( NumReds 1)
Ports: Port1 Port2
Message Queue (Port 1): ((Color Blue))
Message Queue (Port2):

15:54:21 > Suspend("Processl ")

OK
15:54:22> Suspend("Process2")

OK
15:54:22>

Figure 5.4. Another Receiver.

As we have said, the event execution parameter specifies
whether events will or will not be executed for a process. With
both processes now suspended, no events are being executed. We now
single-step the Receiver process (not the Receiver program) to show
some of the individual events (Figure 5.5).

-- _ ... . . .. . . , ,, . nr h
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15:58:58> SingleStep(" Process2)
Event Class: SystemCall
Event Type: ReceiveWait
Event Process: Process2
Event Parameters: Port2

15:59:18> SingleStep(" Process2")
Event Class: MessageTransmission
Event Type: InComingProcessBorder
Event Process: Process2
Event Parameters: Port2 ((Color Blue))

15:59:25> SingleStep("Process2")
Event Class: MessageTransmission
Event Type: InComingPortBorder
Event Process: Process2
Event Parameters: Port2 ((Color Blue))

15:59:34> SingleStep("Process2")
Event Class: MessageTransmission
Event Type: OutGoingPortBorder
Event Process: Process2
Event Parameters: Port2 ((Color Blue))

15:59:37> SingleStep("Process2")
Event Class: MessageTransmission
Event Type: InComingProgramBorder
Event Process: Process2
Event Parameters: Port2 ((Color Blue))

15:59:47> SingleStep("Process2")
Event Class: SystemCall
Event Type: ReturnResult
Event Process: Process
Event Parameters: ((Color Blue))

15:59:50> SingleStep("Process2")
Event Class: SystemCall
Event Type: AsserlObject
Event Process: Process2
Event Parameters: ( NumBlues 5)

15:59:53> SingleStep("Process2")
Event Class: SystemCall
Everit Type: ReturnResult
Event Process: Process2
Event Parameters: OK

15:59:56> SingleStep("Process2")
Event Class: Sys emCall
Event Type: Receive
Event Process: Process2
Event Parameters: Port2

Figure 5.5. Single-stepping Receiver.
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5.4. An Example: Process Mlonitoring.

In this section, we use our tools to monitor processes. This
will involve monitoring a previous process execution (from the
above example) and monitoring a running process.

For the first monitoring example, we monitor a process that
has already finished executing by using a transcript of its
execution. We assume the user has made a transcript of the
Receiver process (from the above section). This transcript is
taken while the Receiver works on a set of messages from the
Sender. We now monitor the transcript with the demon shown in
Figure 5.6 below. This demon will notify the user when a message
is sent containing both strings "Blue" and "Red". In Figure 5.7
below that, we show the session at the debugger to perform this
monitoring.

ReadWrite (P)
EventType = InComingProcessBorder and
EventProcess = P and
ValueOflnMessage(Message,"Color") = "(Blue Red)"

begin
i = ValueOfProcessVariable(P,"MessageCount")
AsserlProcessVariable(P, MakeNVPair(" MessageCount",i + 1))
Type("Got message with both")

end

Figure 5.6. MonitorBoth.demon.
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16:19:40> CreateProcess("Suspend")
Processi

16:19:56> StartTranscript("T" ,"Process ")
OK

16:20:33> EnableDemon(" MonitorBoth.demon",("Processi "))
Demon 1

16:20:46> Resume("Processl ")
OK

16:20:55>
Demon1:
Got message with both

16:20:59>
Demon1:
Got message with both

16:21:04>
Demon1:
Got message with both

16:21:08> SuspendAIl0
OK

16:21:11 > Statusof("Processl")
Status Of: Processi
Event Execution Parameter: Suspend
Program State: (Transcript T)
Process Variables: ( MessageCount 3)

16:21:18>

Figure 5.7. Monitoring messages with the debugger.

Note that this count is kept in the process variable
"MessageCount". Also note that since this is a transcript replay,
none of the original system call events recorded in the replay that
created process variables are executed, so the process shows no
other variables.

For our second monitoring example, we actually run the Sender
and Receiver programs and again monitor the messages using the
MonitorBoth demon from Figure 5.6 above. The debugging session to
perform this monitoring is shown below that in Figure 5.8.

I - . - ,,, - . . . .. - - i - n-. I III i'll- II
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16:23:01 > CreateProcess("Run")
Process1

16:23:10> CreateProcess(" Suspend")
Process2

16:23:27> StartProgram("Sender", "Process ")
OK

16:23:32> Start Program(" Receiver"," Process2")
OK

16:23:41 > EnableDemon("MonitorBoth.demon" ,(" Process2"))
Demon 1

16:24:00> Resume("Process2)
OK

16:24:28>
Demon1:
Got message with both

16:24:43>
Demon1:
Got message with both

16:24:51>
Demon1:
Got message with both

16:24:59>
Demon 1:
Got message with both

16:25:05>
Demon1:
Got message with both

16:25:15>
Demoni:
Got message with both

16:25:21 > SuspendAllI
OK

16:25:23> Statusof("Process2")
Status Of: Process2
Event Execution Parameter: Suspend
Program State: ReceiveWait (on Port1) (Receiver)
Process Variables: (NumBlues 5) (NumReds 3)

( MessageCount 6)
Ports: Port1
Message Queue (Port2): ((Color Blue)) ((Color ( Blue Red)))

16:25:32>

Figure 5.8. Another monitor session.

4 0,0:



- 65 -

5.5. An Example: Process Testing.

This section shows an example of process testing. Process
testing uses a mix of the above techniques of process control and
monitoring to achieve the goal of convincing the user his processes
work.

For this example, we will test a new version of the Receiver
process, Receiver2. Receiver2 counts messages with "Blue"s and
"Red"s but also counts messages that contain both, recording this
count in "NumBoth". A message containing both will cause just
NumBoth to be updated. We show the session below that brings up
this program and runs the process until its program state becomes
"ReceiveWait". In Figure 5.9 below, we show the demon used to
notify the user when this has occurred. In Figure 5.10 below that,
we show the session with the debugger for this.

NoEvent (P)
ProgramState(P) = "ReceiveWait"

begin
Suspend(P)
Type(P," in ReceiveWait")
Type(P," suspended")
DisableDemon(MyName)

end

Figure 5.9. WatchForReceiveWait. demon
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16:31:20> CreateProcess(' Suspend")
Processi

16:31:30> StartProgram( "Receiver2", "Processi
OK

16:31:52> E nableDemon(" WatchForReceiveWait .demon " ,"Processi 1)
Demon 1

16:32:09> Resume(" Process 1)
OK

16:32:16>
Demon 1:
Process 1 in ReceiveWait

16:32:19>
Demoni:
Process 1 suspended

16:32:19>

Figure 5.10. Bring up Receiver2.

Now we send this process messages with various "Blue ts and
"Red"s and watch all three counts until we are satisfied the
program works. The debugger session for this is in Figure 5.11
below.
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16:32:20> Resume("'Processl"
OK

16:32:30> Status~f("Processl"
Status Of: Processi
Event Execution Parameter: Run
Program State: ReceiveWait (on Port 1) (Receiver2)
Ports: Porti
Message Queue (Porti):

16:32:40> Send("Port 1," (Color Blue) )")
OK

16:33:05) Send(' Port 1"Sl (Color Blue)))
OK

16:33:30) Send("Portl ",((Color ( Blue Red))"
OK

16:33:54> Status~f("Processl)
Status Of: Processi
Event Excecution Parameter: Run
Program Slate: ReceiveWait (on Porti) (Receiver2)
Process Variables: ( NumBlues 2) (NumReds 0) (NumBoth 1)
Ports: Port 1
Message Queue (Port 1):

16:36:11 > Suspend(" Processl "
OK

16:36:22) Send('Portl ","( (Color ( Blue Red )))")
OK

16:36:34> SingleStep(" Processl"1
Event Class: SystemCall
Event Type: ReceiveWait
Event Process: Procesi
Event Parameters: Porti

16:36:40) SingleStep(" Process 1 ")
Event Class: MessageTransmission
Event Type: lnComingProcessBorder
Event Process: Process 1
Event Parameters: Porti ((Color ( Blue Red)))

Figure 5.1l.a. A final debugger session.
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16:36:44> SingleStep("Procesl ")
Event Class: MessageTransmission
Event Type: InComingPorlBorder
Event Process: Processi
Event Parameters: Port1 ((Color ( Blue Red)))

16:36:48> SingleStep(" Process 1")
Event Class: MessageTransmission
Event Type: OutGoingPortBorder
Event Process: Processi
Event Parameters: Porti ((Color ( Blue Red)))

16:36:51 > SingleStep(" Processi ")
Event Class: MessageTransmission
Event Type: InComingProgramBorder
Event Process: Process1
Event Parameters: Port1 ((Color ( Blue Red)))

16:36:53> SingleStep(" Processl ")
Event Class: SyslemCall
Event Type: ReturnResult
Event Process: Processl
Event Parameters: ( ( Color ( Blue Red)))

18:36:57> SingleStep(" Process 1")
Event Class: SystemCall
Event Type: AssertObject
Event Process: Process1
Event Parameters: (NumBoth 2)

16:37:00> SingleStep("Processl ")
Event Class: SystemCall
Event Type: ReturnResult
Event Process: Processi
Event Parameters: OK

16:37:03> SingleSlep(" Process1 )
Event Class: SystemCall
Event Type: Receive
Event Process: Processi
Event Parameters: Port1

16:37:12> SingleStep("Process I ")
Event Class: SystemCall
Event Type: ReceiveWait
Event Process: Process1
Event Parameters: Port1

Figure 5.1l.b. A final debugger session (cont.).

-' ...... . i



Chapter 6

Conclusions

6.1. Contributions and Conclusions.

The evolution of program debuggers has resulted in systems
that describe the particular activities of a computer in terms of
the abstractions used by the programmer to design and create his
programs, Research into debugging systems has led to the use of
programming concepts (such as dynamic and static typed variables,
linked-lists, record structures, procedure instances, objects and
object constraints) as models for displaying the behavior of a
running program to the user. Such systems share many common
characteristics, including:

- the use of a debugging language consistent with the user's
programming language,

- mechanisms to filter out irrelevant information,

- dynamic program monitoring facilities and

- the ability to test parts of programs without involving the

entire program.

In this work, the programming model is that of communicating,
loosely-coupled processes and it is exactly the abstractions of
this model that form the basis of our debugging system. The use of
communicating, multiple processes as a model of computation
provides a clean "cut" of what information about the activities of
the system is in+eresting to the user and what information is not.

* In particular, we define a set of interprocess events that describe
all possible interprocess activities of our model. Our debugging
system has various facilities that allow the user to monitor and
control these events.

Our multi-process model defines interprocess objects and
activities. We use these concepts to design a debugging language
that expresses the manipulations a user can make on the
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interprocess domain. This language allows the user to control and
monitor interprocess activities in terms of the interprocess model.
We also describe debugging tools for accessing and manipulating
interprocess events. Using our interprocess debugging language as
an interface, these tools provide the user with a view of his
programs strictly in terms of their interprocess behavior. (This
behavior is, of course, defined in terms of the interprocess events
executed by the individual processes.)

Our debugging tools and techniques provide for the monitoring
and controlling of individual events, the filtering of irrelevant
information, the recording and replaying of interprocess events and
the isolation and testing of individual processes. The tools
consist of a debugger program that provides a direct interface to
the user for giving commands in our interprocess debugging
language, interprocess debuggin demons that provide automatic,
event-driven debugging commands and a transcriber that records all
interprocess events executed for a single process. These tools are
used to achieve the debugging techniques of process control,
process monitoring and process testing.

We claim that the debugging of single programs is better
understood because programming languages and the programming
abstractions provided by these languages are also better understood
than distributed programming abstractions. The development of more
sophisticated programming languages and the combined experiences of
programmers with such languages has provided an important
motivation for the development of more sophisticated debugging
systems. In particular, research that has followed the development
of programming languages has resulted in debugging systems that
provide the user with better representations of his programming
abstractions. Experience gained with these debugging systems has
provided further insight into future directions for such research.

The development of the programming model of message-based,
communicating multiple procPsses to organize large sets of programs
has provided a prime motivation for the research reported here.
Multi-processing makes the understanding of the behavior of each
single program in the system more difficult since a program's
behavior depends on the behavior of others. Our debugging tools
help reduce this added complexity by providing the user with the
means to monitor and control the behavior of his programs at the
level of their interprocess interactions. Thus, we believe this
approach to solving the debugging problems of communicating,
loosely-coupled processes is justified.
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6.2. Future Work.

Our use of borders around certain interprocess objects serves
as a "syntactic sugar" to create a particular set of interprocess
events to express message communication events between processes,
ports and programs. It is reasonable to assume that the choices
made in this work for the placement of borders will not satisfy all
future needs of multi-process programmers. A more general idea
would be to allow user-defined borders. A user could place such a
border around a set of any arbitrary processes. Message traffic in
or out of this set would create an event related to the
corresponding border. Note this implies the event types of these
border events would also be user-defined.

[Lampson80] suggested an even broader approach to the
classification of "interesting" events: the user would specify as
an event any kind of system activity, from the access of individual
program variables to the activities between sets of large numbers
of processes. The use of any system activity as an event implies
that our debugging system could be used on other types of
multi-process systems. For instance, multiple processes that
communicate through a Hoare monitor could use the tools and
techniques of this work by having procedures in the monitor cause
events instead of executing their code. Only when our kernel
(under the control of the debugger) decided an event should be
executed, would the actual code for the procedure be executed. In
general, any system-detectable activity, which includes message
transmission, calls on any procedure, references to any program
variable or structure and so on, can potentially create a
corresponding event that our event-oriented and event-driven
debugging tools can be used to monitor and control.

The kernel algorithm described in detail in Chapter 4 could
also be made more general by introducing a "meta-demon" approach to
the debugging modifications shown. The only modification to the
kernel algorithm would be a mechanism to fire meta-demons. A
meta-demon would consist of a trigger and a command list, much like
an ordinary debugging demon. The trigger would be a boolean
expression of tests on interprocess information and event
parameters, but the command list would contain instructions to
transcribe or suspend the current event, fire a set of debugging
demons, or cause other such debugging-related activity. Thus, the
primary function of these meta-demons would be to give the user
more control over what parts of the system were debugged and what
were not.

The meta-demon feature, for example, would make it possible to
record one transcript for the events executed by a set of
processes. Irrelevant events could be filtered out of a
potentially long transcript by meta-demons. Meta-demons could also
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be used to create the additional message transmission events
related to border crossings, (user-defined or otherwise). In
particular, this would also provide a mechanism for decreasing the
overhead incurred in the creation of events that are used just for
debugging. That is, the user would not only have control over the
debugging of interesting system activities, but he would also have
control over what system activities create what events in the first

place.

Distributing processes over separate computers that
communicate via networks adds still more complexity to the
debugging of multiple processes. We have specifically addressed

the problems encountered in accessing and manipulating interprocess
objects and activities for a single, multi-process kernel on a
single machine. Distributing the processes over separate computers

implies distributing the kernel functions used by our debugging
tools.

One obvious way of using our system for debugging distributed
processes would be to have all remote kernels contact an instance
of our kernel before performing any interprocess events. This
centralized approach would involve implementing an extra (but
trivial) protocol layer between the kernel used for debugging and
the kernels on remote machines. This method could be implemented

relatively quickly and would probably work but would also probably
be far too expensive for practical applications.

Distributing the kernels implies distributing at least part of
the debugging tools. By simply making our kernel modifications to
all kernels and implementing an extra (but trivial) protocol layer
between the remote kernels and our debugger, many of our same
debugging functions would immediately become available. In
particular, debugging commands, demons (or meta-demons) and
transcripts that apply to processes local to one machine (and thus

one kernel) would work as always. Such a system could also be
implemented relatively quickly and would incur less overhead than
one using a central debugging kernel.

However, even this approach still leaves open questions about

events occurring across machine boundaries. For instance, there is
no place in these schemes to determine when to fire debugging
demons that refer to events or information between machines. Nor
is it exactly clear what it means for events to occur between
machines: having a demon that fires on particular values of two
process state variables on two different machines implies also
having an interpretation for "the simultaneous occurrence of two
events on two separate machines". The location of the observer (or
the debugger) in such a situation will of course determine whether
the events appear to occur simultaneously or in some order. We
claim that a greater understanding of distributed programming and

MA . -
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of the programming abstractions necessary to deal with the
distributed domain must occur before anyone can begin writing
better distributed debuggers.

Work on distributed debuggers can only follow future work in
distributed architectures, distributed operating systems and
language constructs for distributed programming. A system such as
ours or the ones we proposed here will provide the basis for more
research by giving people experience in actually writing
distributed programs. Further work into the area of debuggers and
program development tools for the multi-process and distributed
process domain can only occur after enough experience has been
gained with programming in such a domain.

Li___________________________
t1
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Appendix A
User's Manual for SPIDER

A.I. Introduction.

This appendix descri'es the commands and operation of the
SPIDER debugging demonstration program. Many of these commands
require as an argument (or return as a result) an object reference
to some interprocess object such as a process or port. Object
references are implemented in SPIDER as a unique string that
identifies the object in the kernel. Nothing prevents the user or
the program from making up object references, so each must avoid
operations that might create references to mythical objects.

A.2. Debugger Commands.

This section details all commands available to the human user
at the debugger. A majority of these commands actually create
events in the kernel to perform their action. Remember, these are
exactly the commands available for execution by demons. The
following is the syntax for these commands:

<UserCommand> ::= <LocalVariableAssignment> I
<ProcedureCall> I

<UNIXShellCommand>

<LocalVariableAssignment> ::= <LocalVariable> = <LocalVariable>
<LocalVariable> = <Constant> I
<LocalVariable> = <ProcedureCall>

<LocalVariable> ::= <AnyNumberOfAlphaNumericCharacters>

<Constant> ::= "<AnyNumberOfAlphaNumericCharacters>"

<ProcedureCall> <CommandName> ( <ArgumentList> )

<ArgumentList> <Argument> [ <Argument> , <ArgumentList>

<Argument> ::= <LocalVariable> I <Constant> I <ProcedureCall>

, -- , . . .
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( <ArgumentList> )

All commands for non-terminal <CommandName> are listed and
described below.

A local variable is a name/value pair local to the debugger.
A local variable is created on the first assignment to it.
Subsequent assignments overwrite the old value. The system will
complain only if you attempt to access the value of a local
variable that has never been assigned a value. If
<AnyNumberOfAlphaNumericCharacters> is just numeric characters, it
is always considered a constant.

All commands return some value, which will be printed out
unless assigned to a local variable. If no return value is shown
with the command definition below, the command returns "OK". An
error message will be returned by a procedure any time there is an
error of any sort, regardless of whether the command is shown to
return a value. Since errors abort the interpretation of commands,
the debugger will never assign an error message to a local
variable.

A.2.1. Processes.

This section describes commands that operate on processes.
These commands provide for the creation of processes, the
examination of the interprocess state of processes and control over
the execution of each interprocess event for a process.

process CreateProcess(event-execution) - this command creates
a process with the event execution parameter as given. This
parameter must be either "Run" or "Suspend". The process will
contain no ports, no process variables and no program, and will
have a program state of "NoCode. This procedure returns a
reference to the process created.

interprocess-step PreviewStep(process) - this command returns
a description of the first interprocess event waiting on the
process's suspend queue. The process must be suspended and there
must be at least one interprocess event awaiting execution for this
process or an error will be returned. The interprocess event
returned will be the first interprocess event to be executed when
the process is resumed (or single-stepped, see "SingleStep" below).

process ProcessOf(port) - this returns a reference to the
process containing the given port.

J;
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Resume(process) - this changes the event execution parameter
of the process to "Run". Any interprocess events previously
suspended for this process are put on the end of the kernel's event
queue.

interprocess-step SingleStep(process) - this resumes a process
for exactly one interprocess event. The process is left suspended
during and after the step's execution. The command returns a
description of the step executed.

Suspend(process) - this changes the event execution parameter
of the process given to "Suspend". The kernel will not execute any
interprocess events for a process that is suspended. This will not
stop the UNIX process running the process's program unless it
executes a system call.

SuspendAll() - this changes the event execution parameter of
all processes to "Suspend". (This is provided for panic stops.)

port WaitingPort(process) - if the given process's program
state is "ReceiveWait" on a port, this will return a reference to
that port, else this will return an error.

A.2.2. Ports.

This section describes commands that operate on ports. These
commands provide for the creation of ports, examination of and
control over their message queues and control over each port's
global name.

Assert(global-nameport) - this asserts the global name given
for the port. If the name is already in use for another port, an
error is returned. If the port already has a global name, it is
quietly written over.

port CreatePortInProcess(process) - this creates a
communication port in the given process, returning a reference to
the port.

message GetFromPort(port) - this removes and returns the first
message in the message queue of the port without causing any border
crossings.

port Locate(global-name) - this returns a reference to the
port with the global name as given. An error message is returned

if no port has the given global name.
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integer Number0fMessageslnPort(port) - this returns the number
of messages in the message queue of the port.

message Preview(port) - this returns the first message in the
message queue of the port given. The message is not removed from
the message queue and no borders are crossed.

PutlnPort(portmessage) - this inserts the message onto the
end of the message queue of the port. The message will not cross
any borders to get into the port.

Remove(global-name) - this removes the global name from the
port it was associated with.

A.2.3. Messages.

This section describes commands for operating on messages.
This includes the creation of messages, creation of name/value
pairs, the insertion and removal of name/value pairs from messages
and control over the sending and receiving of messages

message AddNVPairToMessage(message,name/value pair) - this
adds the name/value pair to the message returning the resulting
message. The message passed as an argument is not modified.

message CreateMessage() - this returns an empty list and is
intended to be assigned to a local variable. This is more useful
to demons than to the human user, but is provided for completeness.

name/value-pair MakeNVPair(namevalue) - this returns the
name/value pair made out of the name and value given.

message Receive(port) - this command returns the first message
in the message queue of the port given. This simulates the action
of a Receive from within the program of the process that contains
the port. In particular, the message will cross the border of the
port and the border of the program. Any program running in the
process will not see the message.

message RemoveNVPairFromtessage(messagename) - this removes
the name/value pair with the name as given from the message given
returning the resulting message. The message passed as an argument
is not modified.

Send(port,message) - this sends the message to the given port
The message crosses the incoming border of the destination process,
crosses the incoming border of the port and is added to the message
queue of the destination port. This is a Send without a source
process.

-Ai
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SendFrom(process,port,message) - this sends the message to the
port from the process. The process given is used as the source
process, the process containing the port is destination process.
This simulates the action of a Send from the program of the source
process. The message will cross the outgoing border of the source
program, the outgoing border of the source process, the incoming
border of the destination process, the incoming border of the
destination port and is then added to the message queue of the
destination port.

value ValueOfInMessage(messagename) - this returns the value
of the name/value pair with the given name as found in the message.

A.2.4. Programs.

This section describes commands for operating with programs.
(These are not the system calls available to programs. System
calls are described in section A.3 below.) This includes commands
for starting and stopping programs in processes and for examining
the program state of the process.

StopProgram(process) - this shuts down the UNIX process
running the program of the given process (if it hasn't died already
of its own accord) and sets the program state of the process to
NoCode. Even if the program of a process dies, no new program can
be started in the process until a StopProgram has been performed.

program-state ProgramState(process) - this returns the program
state of the process. This will be one of "NoCode", "Running",
"Dead", "ReceiveWait" or "SystemCall".

StartProgram(run-file-nameprocess) - if no program is running
in the given process (program state is NoCode) then this
establishes run-file-name as the process's program. A UNIX process
is spawned to run this code.

A.2.5. Transcripts.

This section describes commands f.or operating on transcripts.
This includes the starting and stopping of transcribing for a
process and the playback of a transcript in a process by the
kernel.

StartTranscribing(processoutput-file-name) - this establishes
output-t ile-name as the transcript file for the process. Every
interprocess event executed by the kernel for the given process
from this point on will be written into output-file-name.
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StartTranscript(transcript-file-nameprocess) - if there is no
program running in the process, this starts a transcript playback
with the transcript-file-name as input.

StopTranscribing(process) - this closes the transcript file
for the process and stops transcribing.

StopTranscript(process) - this shuts down the transcript
replay in the process.

A.2.6. Demons.

This section describes commands for operating on demons. This
includes enabling and disabling of demons and control over the
continuation of waiting demons.

ContinueDemon(demon) - this continues a waiting demon (see the
Wait command in section A.4 below). Nothing is done if the demon
is not waiting.

DisableDemon(demon) - this disables the demon. If the demon
is not currently a member of any trigger set, it is removed from
the list of enabled demons. If the demon is currently a member of
a trigger set, it is flagged to destroy itself when re-enabled.

demon EnableDemon(demon-file-name,actual-parameters) - this
enables the trigger of demon-file-name and associates the
actual-parameters given with the formal parameters of the demon.
Note the the command EnableDemon has exactly two arguments. The
actual parameters are a list of arguments enclosed in parentheses
(see the grammar for commands above). The actual parameters must
match in number the formal parameters in the demon.

A.2.7. Miscellaneous Commands.

This section describes some miscellaneous commands. This
includes commands to get general status of the system, to execute
command files, to examine and control process variables in
processes and to operate on lists.

AssertProcessVariablelnProcess(process,name/value-pair) - this
asserts the name/value pair in the process as a process variable.
If a process variable already exists in the process with the same
name, its value is changed to the value in the given name/value
pair.
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process-status StatusOf(process) - this returns a description
of the given process. This includes the value of the event
execution parameter, the program state of the process and (if a
program is running) the name of the program, a list of all ports in
the process and the entire contents of their message queues, a list
of all process variables and (if transcribing) the name of the
transcript file.

list StatusOfAll() - this returns a the StatusOf all
processes.

Type(value) - this types out the value given. Mostly useful
to demons, this is provided for completeness.

value ValueOflnProcess(process,name) - this returns the value
of the process variable in the process with the name as given.

A.3. System Calls.

The syntax of these calls follows the conventions for C
procedure calls. The following is the definition in C for each
procedure, showing the type of the procedure and the types of the
formal parameters. The procedure types "name", "list", "plocess",
"port", "message", "run-file-name", "string", etc., are each a
pointer to an array of characters. (Some syntactic liberty has
been taken to describe the types of the formal parameters.)

A.3.1. Processes.

This section describes procedures that operate on processes.
These procedures provide for the creation of processes, the
examination of interprocess state and some control over spawned
processes.

int CodelsAlive(process) - this returns the C constant "true"
if and only if the program state in the process given is not
"Dead", otherwise "false". The process must be a child process of
the caller.

nt ReplaceProgram(process, run-file-name) - if the program
state of the process is anything but "Dead , this will return
"false". If the program state of the process is "Dead", this will
establish run-file-name as the new program of the process.

process StartPiogram(run-file-name) - this routine creates a
new process with event execution parameter "Run" and establishes
run-file-name as the program in that process. (The kernel will
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spawn a UNIX process with the code found in run-file-name.) This
also returns the process name of the new process. Note there are
only two calls which will respond to the use of this process name:
CodelsAlive and ReplaceProgram. The latter call will only execute
when the former returns "false".

A.3.2. Ports.

This section describes procedures that operate on ports.
These pro-edures provide for the creation of ports, examination of
and control over their message queues and control over each port's
global name.

int Assert(global-name,port) - this asserts global-name as the
global name for the port. If the name is already in use for
another port, "false" is returned. If the port already has a name,
it is quietly written over and the call returns "true". The port
must be contained in the process running the program that makes
this call.

port CreatePort() - this creates a communication port in the
process running the program, returning a reference to the port.

port Locate(global-name) - this returns a reference to the
port with the global name as given. The port does not need to be
contained in the program's process.

int NumberOfMessageslnPort(port) - this returns the count of
the number of messages in the message queue of the port as a
string. The port must be contained in the process running the
program.

message Preview(port) - this returns the first message of the
port given. The message is not removed from the message queue and
no borders are crossed. The port must be contained in the process
running the program.

Remove(global-name) - this removes the global name from the
port it was associated with. This port must be contained in the
process running the program.

* ~ ~ ,,-. V '~ ~A i
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A.3.3. Messages.

This section describes procedures for operating on messages.
This includes the creation of messages, creation of name/value
pairs, the insertion and removal of name/value pairs from messages
and control over the sending and receiving of messages

message AddNVPairToMessage(message, list) - this adds the
name/value pair nvpair to the message returning the resulting
message. If the name already exists in the message given, its
value is overwritten. The message passed as an argument is not
modified.

message Create~essage() - this returns the empty message
If( )It

list MakeNVPair(name, name-or-list) - this returns the
name/value pair made out of the name and value given.

message Receive(port) - this returns the first message in the
message queue of the port given. This port must be contained in
the process running the program. The message will cross the
outgoing border of the port and the incoming border of the program.
The program state of the process will be "ReceiveWait" until the
message is returned to the code after crossing all the borders.

message RemoveNVPairFromiessage(message, name) - this removes
the name/value pair with the name as given from the message
returning the resulting message. The message passed as an argument
is not modified.

int Send(port, message) - this sends the message to the given
port. The message crosses the outgoing program border of the
program that makes the call, the outgoing process border of the
containing process, the incoming process border of the destination
process, the incoming port border of the destination port, and is
then added to the message queue of the port. This routine returns
"false" if the port does not exist or the message is not in the

correct form, otherwise it returns "true".

value ValueOflnMessage(message, name) - this returns the value
of the name/value pair in the message with the name as given. This
value will either be a name or a list.
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A.3.4. Miscellaneous Procedures.

This section describes some miscellaneous procedures. This
includes procedures to examine and control process variables and to
operate on lists.

AssertProcessVariable(name/value-pair) - this asserts the
name/value pa4r given as a process variable in the process running
the program. If there exists a process variable with the same
name, its value is overwritten.

value ValueOf(name) - this returns the value of the process
variable in the process running the program with the name as given.

A.4. Demons.

This section describes interprocess debugging demons. The
syntax for demons and demon triggers is as follows:

<Demon> ::= <Class> ( <Formal-parameter-list> ) <DemonTrigger>
begin <DemonCommandList> end

<Class> ::= ReadWrite I ReadOnlyFinal I Replace I NoEvent

<Formal-parameter-list> ::= <LocalVariable> I
<LocalVariable> , <Formal-parameter-list>

<DemonTrigger> ::= <BooleanExpression>

<BooleanExpression> ::= <ParenthesizedExpression> I
<ParenthesizedExpression> and <BooleanExpression>
<ParenthesizedExpression> or <BooleanExpression>

<ParenthesizedExpression> ::= <Expression> I C <BooleanExpres. on>

<Expression> ::= <VarOrProc> I
<VarOrProc> = <VarOrProc> I
<VarOrProc> <> <VarOrProc> I
<VarOrProc> > <VarOrProc> I
<VarOrProc> >= <VarOrProc> I
<VarOrProc> < <VarOrProc> I
<VarOrProc> <= <VarOrProc>

<VarOrProc> ::= <LocalVariable> I <Constant> I
<DemonTriggerProcedure>

<DemonCommandList> ::= <UserCommand> I
<UserCommand> <return> <DemonCommandList>

I-__ _ _ _ _ _ _
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The non-terminal <DemonTriggerProcedure> has the same syntax
as <Procrp'reCall> in the debugger syntax. The non-terminal
<UserCom aid> is also defined in the debugger syntax.

The non-terminal <LocalVariable> can take on any name from the

demon's execution environment, which includes:

- any name from the formal parameter list of the demon,

- the names EventClass, EventType and EventProcess,

- other names based on the event parameters of the interrupted
event.

A.4.1. Demon Trigger Procedures.

The following are some procedures for testing various
parameters.

int CodelsAlive(process) - this returns "true" if and only if
the program state of the process is not "Dead", otherwise 'false".

program-state ProgramState(process) - this returns the program
state of the process, which will be one of "NoCode", "Running",
"Dead", "ReceiveWait" or "SystemCall".

event-execution EventExecutionParameter(process) - this
returns the value of the event execution parameter of the given
process, either "Run" or "Suspend".

port Locate(global-name) - this returns the name of the port

with the global name as given.

int NumberOfMessageslnPort(port) - this returns the count of
the number of messages in the message queue of the port given.

message Preview(port) - this returns the first message of the
port given. The message is not removed from the message queue of
the port and no borders are crossed.

process ProcessOf(port) - this returns a reference to the
process that contains the given port.

value ValueOflnProcess(processname) - this returns the value
of the process variable in the process with the name as given.

• -,Gr - . .-
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port WaitingPort(process) - if the program state of the
process is ReceiveWait" on a port, this returns the name of that
port, else this will return an error.

A.4.2. Demon Commands.

Within the its command list, a demon can execute any command
available in the debugger. In addition, the following procedures
are provided:

Wait(O - this suspends this demon instance until someone
(another demon or the user) executes a ContinueDemon command on the
name of the waiting demon. The interrupted event for this demon
and all demons in the associated trigger set will be suspended
until this demon is resumed.

ReplaceEventWithReturnResult(result) - this causes the demon
to stop executing and specifies to the kernel that the interrupted
event is to be aborted and the result given with the call is to be
used to create a event. This command can only be called by a demon
of class Replace. If the interrupted event is a system call, the
result is used to create an event of type "ReturnResult". If the
interrupted event is of class "MessageTransmission", and the result
is "nil", the event is aboi..A completely. If the interrupted
event is of class "MessageTransmission", and the result is a
message, the result will replace the message in the interrupted
event to make a new event. This never returns to the demon.

DemonDone() - this command is always executed by default if
the demon command list is exhausted, but can be called by the
demon. This causes the demon to stop executing and never returns.



Appendix B
Event Types

B.1. Introduction.

This appendix describes all the event types of our model.
Each of these types are implemented in the SPIDER demonstration
program and use the various parameter names listed below. The
event types are listed below by the event class that they occur
with. Also included in this description are the names
corresponding to the event parameters (for system call and message
transmission events) that will be included in demon execution
environments if the event is interrupted to fire a demon.

B.2. Debugger Commands.

The event types of event class "DebuggingCommands" are caused
by commands executed by the debugger either under the control of
the human user or a demon. Each of these event types has the same
name as the corresponding debugger command. These commands are
listed in section A.2 and A.4 of Appendix A. For each type, the
event parameters are the arguments to the call (if there are any)
or null. (We are not naming the event parameters for the debugger
commands here, since we do not use the debugger to watch its own
events.)

B.3. System Calls.

The event types described in this section are caused by system
calls by programs. System calls are described in section A.3 of
Appendix A.

AddNVPairToMessage - this is caused by the system call
AddNVPairToMessage. The event parameters are a message and a
name/value pair, named respectively "Message" and "NameValuePair".
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Assert - this is caused by the system call Assert. The event
parameters are an arbitrary string and a port reference, named
respectively "GlobalName" and "Port"

AssertProcessVariable - this is caused by the system call
AssertProcessVariable. The event parameter is a name/value pair
called "NameValuePair".

CodelsAlive - this is caused by the system call CodelsAlive.
The event parameter is a process reference and is named Process".

CreateMessage - this is caused by the system call
CreateMessage. There are no event parameters.

CreatePort - this is caused by the system call CreatePort.
There are no event parameter .

Locate - this is caused by the system call Locate. The event
parameter is an arbitrary string called "GlobalName".

MakeNVPair - this is caused by the system call MakeNVPair.
The event parameters are a name and a value, called respectively
"Name" and "Value".

NumberOfMessageslnPort - this is caused by the system call
NumberOfMessageslnPort. The event parameter is a port reference
called "Port".

Preview - this is caused by the system call Preview. The
event parameter is a port reference called "Port".

Receive - this is caused by the system call Receive. The
event parameter is a port reference called "Port".

ReceiveWait - this is caused by the event type "Receive". The
event parameter is a port reference called "Port"

ReturnResult - this is caused by the execution of system
calls. The event parameter is a result called "Result".

Remove - this is caused by the system call Remove. The event
parameter is an arbitrary string called "GlobalName".

RemoveNVPairFromMessage - this is caused by the system call
RemoveNVPairFromMessage. The event parameters are a message and a
name, called respectively "Message" and "Name".

ReplaceProgram - this is taused by the system call
ReplaceProgram. The event parameters are a process reference and
the name of an executable program, named respectively "Process" and
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"ProgramName".

Send - this is caused by the system call Send. The event
parameters are a port reference and a message, named respectively
"DestinationPort" and "Message".

StartProgram - this is caused by the system call StartProgram.
The event parameter is the name of an executable program and is
called "ProgramName".

ValueOf - this is caused by the system call Value0f. The
event parameter is a name called "Name".

ValueOflnMessage - this is caused by the system call
ValueOflnMessage. The event parameters are a message and a name,
called respectively "Message" and "Name".

B.4. Message Transmission.

The event types of class "MessageTransmission" are related to
the transmission of message across object borders. Each message
transmission event has two event parameters, the message being
delivered and the destination port. These are named respectively,
"Message" and "DestinationPort". The six event types of this class
are: InComingProcessBorder, OutGoingProcessBorder,
InComingProgramBorder, OutGoingProgramBorder, InComingPortBorder
and OutGoingPortBorder.
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